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PRELIMINARY RESULTS FROM THE ANALYSIS OF

WIND COMPONENT ERROR

JULY DATA

by

P. A. Jacobs and D. P. Gaver

0. INTRODUCTION

Numerical meteorological models are used to assist in the prediction of

weather. Each run of a numerical model produces forecasts of meteorological

variables which are used as preliminary predictions of the future values of

these variables. These initial predictions are referred to as first-guess values.

In this paper first-guess values will refer to the most recent 12 hour forecasts.

In certain areas of the world, observations of the values of forecasted

variables become available. In our case the observations become available 12

hours after the first-guess values are computed. Prior to the next run of the

numerical model a multivariate optimal interpolation analysis updates a

first-guess value of a variable by adding to it a weighted observed value of the

variable if it is available. The weight multiplying the observed value depends

on estimates of the squared error of the first-guess value and the squared

error of the observation; cf. Goerss et al. [1991, a, b]. Thus it is of importance to

predict such first-guess squared errors.

The general problem of modeling and predicting mean square errors is

important but not widely studied; see Davidian and Carroll (1987), Nelder and

Lee (1992), Aitken (1987), and McCullagh and Nelder (1983). In the next
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section statistical models for the error of the first-guess are introduced. The

models assume the error of the first-guess has mean 0 but has a scale

parameter that is log-linear with suitable covariates, i.e. explanatory or

regression variables.

Results are reported concerning the estimation of model parameters, and

model cross-validation and predictive ability for u, v wind component data

from the month of July 1991. The data consist of measurements and 12 hour

forecasts (first-guess values) at the 850 mb, 500 mb and 250 mb levels from 93

stations in North America, 25N-75N. The forecasts are produced using the

NOGAPS Spectral Forecast Model; cf. Hogan et al. (1991). Each station has

measurement and first-guess values for every 12 hours; there are some

missing observations and suspicious values of wind components equal to 0.

These missing and questionable values are deleted from the data set. The

measurement values (if available) are subtracted from first-guess values to

obtain observations of the error of the first-guess value. The results appear in

Sections 3 and 4 and in Appendices A, B.

The results indicate that estimates of the variance of the error of first-

guess wind components can be improved by using covariates which are

functions of the wind components. Covariates using observed values of the

wind components appear to have more predictive ability than those using

first-guess values. Further exploratory work is needed to determine the

degree with which these statistical results can be used to improve the

forecasting ability of the numerical model.
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1. THE MODELS

Fix a location. Let

Uo(t) = observed u-wind component at time t

UP(t) = first-guess u-wind component at time t

Vo(t) = observed v-wind component at time t

Vj(t) = first-guess v-wind component at time t

r(t) = [(U0(t) - U0 (t- 1))2 + (Vo(t)- Vo(t- 1))2]2

s(t) = [u(t) + 2

Y(t)= U0(t)-Uf(t) or Y(t)= Vo(t)-Vf(t)

The variable Y(t) is the first guess error. The variable r(t) is a measure of

the observed change in the wind. The variable s(t) is the observed wind

speed.

The models considered are as follows:

One Variable Models

1. (Y(t)) are independent normally distributed random variables with

mean 0 and variance

af(1;t) = exp{a1 (1) + il(1)r(t)}. (1)

2. (Y(t)) are independent normally distributed random variables with

mean 0 and variance

of (2;t) = exp{al (2) + #I (2)s(t)}. (2)
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Two Variable Model

3. (Y(t)} are independent normally distributed random variables with

mean 0 and variance

a22(t) = exp{a + fljr(t)+ f 2s(t)}. (3)

Independence Assumption

The first guess errors at different locations are independent. The

parameters in the variance models do not depend on location.

2. ESTIMATION OF PARAMETERS

The model parameters are estimated by maximum likelihood. A system

of equations is obtained by setting the first partial derivative with respect to

each parameter of the log likelihood function equal to zero. The system of

equations is solved numerically using Newton's method to obtain the

maximum likelihood estimates. The procedure for the normal models above

is given in Appendix A of Jacobs and Gaver [1991].

3. THE DATA ANALYSIS-JULY DATA

3.1 Observed Wind Covariate Models

In this subsection we report an assessment of the goodness of fit and

cross-validation for the normal models (1)-(3) using observational wind

components as covariates. There are six analyses; one for the u-wind

component (respectively v-wind component) for each pressure level. Once

missing values and suspicious wind values of 0 are deleted there are 3519 data

values at the 850 mb level, 3833 values at the 500 mb level and 3830 values at

the 250 mb level. Each analysis proceeds along the same lines. In what

follows by data we mean triples (y(t), r(t), s(t)).
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In each analysis the data are randomly divided into two sets called DA

and DB without regard to the values of the data.

The maximum likelihood parameter estimates for each model (1)-(3) are

obtained for each set DA and DB and for all the data. The parameter estimates

and their estimated standard errors (computed from the second partial

derivatives of the likelihood evaluated at the estimates) appear in Table 1.

Note that all the estimates are positive. Hence increased r(t) and/or s(t)

values are associated with increased variance of the first guess value. This is

plausible physically, since a large value of r(t) is indicative of a change in the

atmosphere and a large value of s(t) is indicative of an active location in the
2 2 2atmosphere. The estimated variances al(1,t), al(2,t), a2(t), are computed for

the parameters estimated from DA and DB using (1)-(3) for each data point in

DA and DB.

The models are for the variances of the observations rather than the

observations themselves. One possible procedure to informally assess

goodness-of-fit and cross-validate the models is by binning the data. To assess

models (1) and (3) the data (y(t), r(t), s(t)) are binned into 10 bins based on

ordering the values of r(t) from smallest to largest. The data in the first bin

correspond to the smallest values of r(t); the data in the 10th bin correspond

to the largest values of r(t). Each bin contains about 1 th of the data with the10

10th bin containing a few more data. The averages of the estimated variances

for models (1) and (3) are computed for each bin. The average y(t) 2 is also

computed for each bin.

To assess models (2) and (3) the same procedure is used but the binning is

based on the values of s(t).

5



TABLE 1. NORMAL MODELS
JULY DATA PARAMETER ESTIMATES

(STANDARD ERRORS)
OBSERVED WIND COVARIATES

One-variate Models Two-variate Models

Pressure Wind Data r(t) s(t) log MSE = a+Ar(t)+fi2s(t)
Level Comp. Set a a a a#2

850 u A 1.47 0.11 1.50 0.09 1.25 0.09 0.05
(0.06) (0.008) (0.06) (0.007) (0.06) (0.01) (0.009)

B 1.42 0.12 1.41 0.10 1.13 0.08 0.07
(0.06) (0.010) (0.06) (0.008) (0.07) (0.01) (0.009)

ALL 1.45 0.11 1.46 0.09 1.20 0.08 0.06
(0.04) (0.006) (0.04) (0.005) (0.05) (0.007) (0.006)

850 v A 1.58 0.10 1.53 0.09 1.36 0.07 0.05
(0.06) (0.008) (0.06) (0.008) (0.07) (0.01) (0.009)

B 1.51 0.11 1.52 0.10 1.21 0.09 0.06
(0.06) (0.009) (0.06) (0.008) (0.007) (0.01) (0.009)

ALL 1.55 0.11 1.53 0.09 1.29 0.08 0.06
(0.04) (0.006) (0.04) (0.006) (0.05) (0.007) (0.006)

500 u A 1.37 0.12 1.54 0.06 1.12 0.10 0.03
(0.06) (0.008) (0.06) (0.005) (0.07) (0.008) (0.005)

B 1.45 0.10 1.66 0.04 1.24 0.09 0.02
(0.06) (0.009) (0.06) (0.005) (0.07) (0.009) (0.005)

ALL 1.40 0.11 1.58 0.05 1.17 0.10 0.03
(0.04) (0.006) (0.04) (0.005) (0.05) (0.006) (0.004)

500 v A 1.53 0.09 1.74 0.03 1.35 0.08 0.02
(0.06) (0.009) (0.06) (0.005) (0.08) (0.009) (0.005)

B 1.45 0.11 1.59 0.05 1.20 0.09 0.03
(0.06) (0.009) (0.06) (0.005) (0.07) (0.009) (0.005)

ALL 1.49 0.10 1.66 0.04 1.27 0.09 0.03
(0.04) (0.006) (0.05) (0.004) (0.05) (0.007) (0.004)

250 u A 2.41 0.06 2.50 0.03 2.13 0.05 0.02
(0.06) (0.005) (0.06) (0.003) (0.07) (0.005) (0.003)

B 2.42 0.06 2.53 0.03 2.13 0.05 0.02
(0.06) (0.005) (0.06) (0.003) (0.07) (0.005) (0.003)

ALL 2.41 0.06 2.52 0.03 2.13 0.05 0.02
(0.04) (0.003) (0.04. (0.002) (0.05) (0.004) (0.002)

250 v A 2.41 0.07 2.47 0.03 2.08 0.05 0.02
(0.06) (0.005) (0.06) (0.003) (0.07) (0.005) (0.003)

B 2.49 0.05 2.39 0.03 2.16 0.04 0.02
(0.06) (0.005) (0.06) (0.003) (0.07) (0.005) (0.003)

ALL 2.44 0.06 2.43 0.03 2.12 0.05 0.02
(0.04) (0.003) (0.04) (0.002) (0.05) (0.003) (0.002)

r(t) = [((ut) - u(t-1)) 2 + (0) - v(t-))] A/2

s(t) = [u(t)2 + v(t)2]1/ 2

NOTE: Data are divided into two sets randomly without regard to data values. One set is
called A; the other is called B.
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Figures 1-24 present graphs of the log [average y(t)2] in each bin versus log

[average estimated variance] in each bin for models (1) and (3) and models (2)

and (3). Figures 1, 5, 9, 13, 17, 21 (respectively 2, 6, 10, 14, 18, 22) show the

logarithm of the average of the y(t)2 values of DA (respectively DB) versus the

logarithm of the average of the estimated variances for each bin using the

estimated parameters from DA (respectively DB). If a model were perfect, a

point should be close to the 450 line shown.

Figures 3, 7, 11, 15, 19, 23, (respectively 4, 8, 12, 16, 20, 24) present graphs of

log average y(t) 2 of DA (respectively DB) versus log average estimated

variances using parameters estimated using data DB (respectively DA). Once

again if the model were perfect, the points would be close to the 45° line.

Since the two-variate model (3) is shown with both one-variate models, it

is possible to obtain some idea of the effect of the two different sets of bins on

the log averages. In particular, the graphs corresponding to the 500 Mb height

winds, Figures 9-16, show that the display of log averages can be quite

sensitive to which variate is used to do the binning.

Keeping this binning sensitivity in mind, the figures suggest the

following concerning the models using observed winds as covariates. It

appears that of the two one-variate models, model (1) which uses r(t) as the

covariate is the better. The two-variate model (3) appears somewhat better

than model (1). If wind speed is used as the single covariate, it appears to

overstate the variance; the addition of the second covariate r(t) in this case

seems to tend to make the estimated variance smaller and bring the log

[average predicted variance] in a bin closer to the log average y2 in the bin.
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Another way to assess goodness of fit and to cross validate is to evaluate

the log-likelihood for the different models at the parameter estimates. Larger

values of the log-likelihood suggest better model fit; cf. Cox and Hinkley

[1974].

Table 2 presents the values of the log-likelihood at the parameter

estimates up to addition and multiplication of constants for the parameter

estimates of Table 1; the function being evaluated is

n n

e= -na-Y - j Xxi ?yexp{-a +xj3}. (4)
i=1 i=1

where xi = XxjfIj. The values of 2 are presented for data DA (respectively

DB) using the parameters fit using DA (respectively DB); these are values

assessing goodness of fit; since maximum likelihood is the estimation

procedure, the largest value of i in each of these two rows is the one

corresponding to the two-variate model. Values of 1 are also presented for

data DA (respectively DB) using the parameters fit using DB (respectively

DA); these are values assessing cross-validation. The underlined value in

each row is the maximum value in that row; the corresponding model

provides the best model fit. The bold italicized value in each row is the

maximum value for the two one-variate models; the corresponding one-

variate model provides the best model fit between the two one-variate

models.

The models considered in Table 2 are models (1)-(3) and the model that

the (Yi} are independent normal with mean 0 and variance not a function of

the covariates; that is,

8



TABLE 2. NORMAL MODELS
JULY DATA

OBSERVED WIND COVARIATES
LOG-LIKELIHOOD

One-variate Models Two-
Pressure Wind variate

Level Comp. Data Set Model Constant r(t) s(t) Models

850 u A A -5727.0 -5424.4 -5468.8 -5386.5

B B -5337.4 -5362.1 -5379.5 -5306.5

B A -5546.9 -5363.6 -5381.8 -5310.7

A B -5737.2 -5425.9 -5471.5 -5391.2

850 v A A -5680.1 -5486.5 -5500.9 -44.

B B -5693.0 -5504.0 -5540.3 -5450.2

B A -5693.1 -5506.9 -5542.6 -5457.8

A B -5680.1 -5489.7 -5503.4 -6
- --

500 u A A -6237.3 -5909.8 --6049.7 -5871.5

B B -5958.0 -5821.1 -5892.6 -5795.8

B A -5977.0 -5827.4 -5912.7 -5802.1

A B -6258.2 -5918.7 -6076.9 -5879.9

500 v A A -.6023.9 -5904.1 -5976.2 -5889.2

B B -6193.6 -5997.8 -6072.8 -5961.6

B A -6201.7 -6005.0 -6090.1 -5971.2

A B -6031.5 -5910.2 -5990.6 -5897.3

250 u A A -7893.9 -7680.0 -7762.9 -7631.9

B B -7981.7 -7760.4 -7829.5 -7703.2

B A -7983.7 -7760.7 -7830.2 -7703.4

A B -7895.9 -7680.3 -7763.6 -7632.1

250 v A A -8025.3 -7770.6 -7850.5 -7710.6

B B -7758.0 -7611.7 -7622.3 -

B A -7775.8 -7624.4 -7639.0 -7569.5

A B -8044.9 -7786.3 -7868.7 -29.
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oai (t) = ea (Constant variance). (5)

The two-variate model (3) maximizes the cross-validation values of 1 for

data DA (respectively DB) with a model using parameters fit using DB

(respectively DA). This suggests that both r(t) and s(t) together have

predictive ability.

For the one-variate models (1) and (2) the cross-validation values of 1 for

DA (respectively DB) using the parameters fit using DB (respectively DA) are

maximized when r(t) is the variable for all cases. This suggests that r(t) by

itself has better predictive value than the wind speed s(t) by itself. The

goodness of fit values of i for the one-variate models using DA (respectively

DB) have a higher value of 1 associated with r(t) the majority of the time.

This suggests that r(t) by itself provides a better description of the data than

s(t) by itself.

Comparing the value of 1 for the model with constant variance (5), ic, for

DA (respectively DB) fit using DA (respectively DB) with the corresponding

cross-validation value of 1 for DA (respectively DB) using models (2), (3) fit

using DB (respectively DA) indicates the following. The values of i for

models (1), (2) and (3) fit with the other half of the data are larger than the

corresponding value 1c for the constant variance model fit using the data to

be modeled. This indicates that both models (2) and (3) fit with the other half

of the data describe the data better than the best constant variance model (5) fit

with the same data it is used to summarize.

Table 3 presents values of the fraction of increase in 1, (1-t c)/I 1c I, where

1c is the maximum value of 2 for the constant variance model (5) fit using

data DA (respectively DB) compared to the cross-validation value of 2 for DA

10



(respectively DB) using models (1)-(3) fit using DB (respectively DA). Large

value: of the fraction will indicate better model predictive ability. Note that

the fraction of increase tends to become larger for higher pressure levels. This

behavior suggests that if winds from one pressure level are to be used to

estimate the variance of the first guess, it should be the 850 mb level.

Comparison of the values for the two one-variate models once again suggests

TABLE 3. JULY OBSERVED WIND COVARIATES
FRACTION OF INCREASE (0-ll )I l I

Pressure Wind One-variate Models Two-variate
Level Comp. Data Set Model A(t) s(t) Models

850 U B A 0.03 0.03 0.04

A B 0.05 0.04 0.06

v B A 0.04 0.03 0.04

A B 0.03 0.03 0.04

500 u B A 0.02 0.008 0.03

A B 0.05 0.03 0.06

v B A 0.03 0.02 0.04

A B 0.02 0.01 0.02

250 u B A 0.03 0.02 0.03

A B 0.03 0.02 0.03

v B A 0.02 0.02 0.02

A B 0.03 0.02 0.04

that the one-variate model using r(t) has the greater predictive ability. Once

again the two-variate model appears to have the most predictive ability.

To further explore the predictive ability of the models using observed

covariates, bootstrap experiments were conducted. Six bootstrap experiments

were conducted; one for each u and v wind component at each pressure level.
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Each experiment consists of 250 replications. For each replication the data are

randomly divided into two sets independent of their values which we will

call A and B. Models (1)-(3) are fit to each data set. The value of 1c , the value

of 1 for the constant variance model fit using the same data it is to describe, is

computed for each data set. The value of t for each data set is computed for

each model (1)-(3) with parameters estimated using the other half of the data.

The fraction of increase in 2, (1-1)/ I 1cI is computed for each half of the data.

Figures 1A-6A in Appendix A display histograms of (!-id) I1cI for models

using observed wind covariates. Each histogram includes the fractions for

both A and B data sets. The histogram indicated that the models for the 850

mb level have the most predictive ability. Model (3) using both covariates

appears to have somewhat better predictive ability. Of the two one-variate

models model (1) using r(t) as the covariate clearly has the better predictive

ability.

3.2 First-guess Wind Covariate Models

In this section we report the results of using models (1)-(3) and (5) with

first-guess winds as covariates; the two covariates considered are

rf(t) = [(U f(t) - Uf(t - 1))2 + (V1(t)- V,1))2

and

s1(t = (t)2 + Vf )2.

The first guess resultant wind rj(t) is a measure of forecasted change in

the winds. The first guess wind speed s(t) is a measure of forecasted activity

12



in the atmosphere. Since observed winds are not available over a great

portion of the earth, it is important to have models for predicting the

variance of the first-guess values which involve the first-guess values which

are always available.

Once missing values and suspicious 0 wind values are deleted, there are

3710 observations at the 850 mb level, 4208 observations at the 500 mb level,

and 4132 observations at the 250 mb level. The analysis is the same as in the

previous subsection. The data sets DA and DB are the same as those in the

previous subsection in each case. The values of the parameter estimates with

estimated standard errors appear in Table 4. Note that the estimates are all

positive. Hence increased rjlt) and/or sj(t) is associated with higher variance

of the first guess error. The corresponding values of 1 appear in Table 5.

Once again the underlined value of i is the largest value in each row; the

bold italicized value i is the largest value between the two one-variate

models.

In all cases the values of 1 for the observed wind covariates are larger

than those for the first-guess wind covariates. This suggests that the observed

wind components have better predictive and descriptive value than the first-

guess wind components.
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TABLE 4. NORMAL MODELS
PARAMETER ESTIMATES

(STANDARD ERROR)
FIRST-GUESS WIND COVARIATES

One-variate Models Two Variate Models
Pressure Wind Data rT(t) sAt) log MSE=a+firj(t)+6 2sf(t)
Level Comp. Set a 0 a a P2

850 u A 2.04 0.05 2.13 0.02 2.01 0.05 0.005
(0.06) (0.01) (0.06) (0.01) (0.07) (0.uI) (0.01)

B 1.96 0.05 2.00 0.02 1.90 0.04 0.01
(0.06) (0.01) (0.06) (0.009) (0.07) (0.01) (0.009)

ALL 2.00 0.05 2.07 0.02 1.96 0.05 0.009
(0.04) (0.009) (0.04) (0.006) (0.05) (0.009) (0.007)

850 v A 2.03 0.04 1.96 0.03 1.91 0.02 0.03
(0.06) (0.01) (0.06) (0.009) (0.07) (0.01) (0.009)

B 1.94 0.07 1.93 0.05 1.82 0.06 0.03
(0.06) (0.01) (0.06) (0.008) (0.07) (0.01) (0.009)

ALL 1.98 0.06 1.94 0.04 1.86 0.04 0.03
(0.04) (0.008) (0.04) (0.006) (0.05) (0.009) (0.007)

500 u A 1.87 0.06 1.75 0.03 1.63 0.04 0.03
(0.05) (0.01) (0.06) (0.005) (0.07) (0.01) (0.005)

B 1.99 0.04 1.89 0.03 1.82 0.02 0.02
(0.06) (0.01) (0.06) (0.005) (0.07) (0.01) (0.005)

ALL 1.93 0.05 1.82 0.03 1.72 0.03 0.03
S0.04) (0.007) (0.04) (0.003) (0.05) (0.008) (0.004)

500 v A 1.95 0.05 1.84 0.03 1.75 0.03 0.02
(0.05) (0.01) (0.06) (0.005) (0.07) (0.01) (0.005)

B 1.99 0.04 2.01 0.01 1.91 0.04 0.009
(0.05) (0.01) (0.06) (0.005) (0.07) (0.01) (0.005)

ALL 1.97 0.04 1.92 0.02 1.83 0.03 0.02
(0.04) (0.007) (0.04) (0.004) (0.05) (0.007) (0.004)

250 u A 2.79 0.04 2.64 0.02 2.54 0.02 0.02
(0.06) (0.006) (0.06) (0.003) (0.06) (0.007) (0.003)

B 3.00 0.03 2.92 0.02 2.84 0.02 0.01
(0.05) (0.006) (0.06) (0.003) (0.06) (0.005) (0.003)

ALL 3.00 0.03 2.79 0.02 2.70 0.02 0.02
(0.04) (0.004) (0.04) (0.002) (0.05) (0.006) (0.002)

250 v A 2.81 0.04 2.71 0.02 2.58 0.03 0.02
(0.05) (0.006) (0.06) (0.003) (0.07) (0.006) (0.003)

B 2.77 0.05 2.70 0.02 2.51 0.04 0.02
(0.05) (0.006) (0.06) (0.003) (0.07) (0.006) (0.003)

ALL 2.79 0.04 2.71 0.02 2.55 0.03 0.02
(0.04) (0.004) (0.04) (0.002) (0.05) (0.004) (0.002)
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TABLE 5.
JULY LOG-LKELIHOOD

FIRST-GUESS COVARIATES

Two-
Pressure Wind Data One-variate Models variate

Level Comr. Set Model Constant r(t) st) Models

850 u A A -6018.5 -6000.0 -6014.4 -5999.7
B B -5857.1 -5840.3 -5848.5 -5837.9

B A -5863.9 -5847.4 -5856.9 -5846.3

A B --6025.7 -- W7.5 -6023.6 -6009.0

850 v A A -5900.1 -5890.2 -5884.7 -5881.0

B B -6023.1 -5977.5 -5987.7 -5967.3

B A -6027.2 -5990.4 -5994.1 -5978.4

A B -5904.1 -5900.2 -5900.5 -5889.8

500 u A A -6624.7 -6584.1 --6567.8 -6550.7

B B -6683.1 -6669.1 -6653.3 -6649.0

B A -6683.9 -6674.1 -6658.8 -6656.9
A B -6625.5 -6589.5 -6573.2 -6559.0

500 v A A -6658.3 -6636.2 -6622.8 -6613.9

B B -6656.4 --6638.1 -6648.1 -6635.4

B A --6656.4 -668.6 -6655.4 -6643.6

A B --6658.3 -6636.7 -6631.0 -66Q,•

250 u A A -8484.0 -8437.4 -8407.3 -8392.6

B B -8693.2 -8670.7 -8660.6 -8652.7
B A -8704.2 -8689.5 - M -8682.5

A B --8494.3 -8454.1 -8431.0 -8418.0
250 v A A -8453.7 -8411.9 -8399.7 -8380.1

B B -8550.1 -8486.4 -8488.8 -8451.2

B A -8552.4 -8491.0 -8490.1 -8455.4
A B -8455.9 -48416.5 -8400.9 -8384.2
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Table 5 also indicates the following results concerning models using first-

guess wind covariates. Between the two one-variate models (1) and (2) the

one-variate model using first-guess wind speed has the greater !-value the

majority of the time. This suggests that first-guess wind speed alone has

somewhat better predictive and descriptive value than r1(t) alone. The cross-

validation values of 1 for data DA (respectively DB) using parameters fit with

DB (respectively DA) are maximized in all cases except two for the two-variate

model. This suggests that the two-variate model has better predictive ability.

Comparing the values of 1, to, for DA (respectively DB) using the

constant variance model (5) fit using DA (respectively DB) with the cross-

validation value of 1 for DA (respectively DB) using models (2), (3) fit using

DB (respectively DA) indicates the following. The values of • for models (1),

(2) and (3) fit with the other half of the data are larger in all but two cases than

the corresponding value 1, for the constant variance model fit using the data

to be modeled. This suggests that models (1)-(3) fit with the other half of the

data describe the data somewhat better than the best constant variance model

(5) fit with the data to be described.

Table 6 presents the fraction of increase in log-likelihood obtained by

using models (1)-(3) fit using data DA (respectively DB) to describe data DB

(respectively DA) compared to the value of the likelihood obtained by fitting

the constant variance model (5) using data DB (respectively DA); Table 6

shows values of l-- The results suggest that models using first guess wind

have better predictive ability for lower pressure levels. Hence, if only one

pressure level is to be used it is suggested that models for either the 500 mb

level or 250 mb level be considered.
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TABLE 6
JULY DATA

FRACTION OF INCREASE IN LOG-LIKELIHOOD
FIRST GUESS COVARIATES

iicI

Pressure Wind One-variate Models Two-variate
Level Comp. Data Set Model 1(t) s(t) Models

850 u B A 0.002 0 0.002
A B 0.002 * 0.002

v B A 0.005 0.005 0.007
A B * 0.002 0.002

500 u B A 0.001 0.004 0.004
A B 0.005 0.008 0.010

v B A 0.003 0.000 0.002
A B 0.003 0.004 0.005

250 u B A 0.000 0.000 0.001
A B 0.004 0.006 0.008

v B A 0.007 0.007 0.011
A B 0.004 0.006 0.008

*1 > 1.

To further explore the predictive ability of the models using first guess

covariates, bootstrap experiments were conducted. Six experiments were

conducted, one for each u and v wind component at each pressure level.

Each experiment consists of 250 replications. For each replication the data are

randomly divided into two sets, independent of their values, which we will

call A and B. Models (1)-(3) are fit to each data set. The value of 1c, the value

of 1 for the constant variance model fit using the same data it is to describe, is

computed for each data set. The value of 1 for each data set is computed for

each model (M-(3) fit using the other half of the data. The fraction of increase

in 2, (-Idl/I ?c1, is computed for each half of the data. Figures 7A-12A in
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Appendix A display histograms of (0-i)/ I 1c I for models using first guess

wind covariates. Each histogram includes the fractions for both A and B data

sets. The histograms indicate that the models using first guess wind

covariates do not have as much predictive ability as those using observed

wind covariates. The first guess wind covariate models appear to have the

most predictive ability at the 500 and 250 mb levels with the models at the 250

mb level being somewhat better. Model (3) using both first guess covariates

appears to have the best predictive ability. Of the two one-variate models,

Model (1) using rp(t) as the covariate has the better predictive ability. The

predictive ability of the one-variate model using sf(t) is the most variable.

In summary, based on values of 1, when first-guess winds are used as

covariates it appears that the two-variate model using first-guess wind speed

at the 250 mb level is an attractive choice for predictive purposes. When

observational winds are used as covariates, the two-variate model at the 850

mb level appears to have the best predictive value.

4. A COMPARISON OF MODELS FOR THE MONTHS OF FEBRUARY,

APRIL, AND JULY

Results of a statistical analysis of the first-guess error field for the months

of February 1991 and April 1991 are presented in Jacobs and Gaver (1991).

In this section we report results concerning the use of models fit with July

data (respectively February or April) to predict February or April (respectively

July) mean square first-guess error. These results give an indication of the

possibility of using a model fit with one month's data to predict another

month's data.
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4.1 Observed Wind Covariate Models

In this subsection we report results for normal models (1)-(3) using

observed wind components as covariates. There are six analyses; one for the

u-wind component (respectively v-wind component) for each pressure level.

Table 7 shows the values of the parameter estimates and estimated

standard errors for the February, April, and July data. The minor

discrepancies with the values in Jacobs and Gaver (1991) are due to the

deletion of the suspect 0 wind values from the data sets in this analysis. Table

8 shows the values of 1 for February data (respectively July data) using

parameters fit using February data (respectively July data). Values of 1 are

also presented for February (respectively July) data using parameters fit using

July (respectively February) data. Once again, larger values of i indicate better

model fit. The underlined value in each row is the maximum value in that

row. The bold italicized value in each row is the maximum value of i for the

two one-variate models.

The values of i for February data (respectively July data) using parameters

fit using July data (respectively February data) are maximized by the two-

variate model in all but one case; between the two one-variate models 1 is the

maximized for the model involving s(t) except in 3 cases.

Comparing the value of 1, !,o for the model of constant variance (5) for

February (respectively July) data using parameters estimated from February

(respectively July) data with that for the prediction value of 1 for the models

(2)-(3) for February (respectively July) data using parameters estimated from

July (respectively February) data indicate the following. The values of 1 for

19



TABLE 7. PARAMETER ESTIMATES
(STANDARD ERRORS)

OBSERVED WIND COVARIATES

One-Variate Models Two-variate Models
Pressure Wind Data r(t) s(t) log MSE = a+fr(t)+2s(t)

Level Comp. Set a L a X a A
850 u July 1.45 0.11 1.46 0.09 1.20 0.08 0.06

(0.04) (0.006) (0.04) (0.005) (0.05) (0.007) (0.006)
Apr. 1.86 0.09 1.68 0.009 1.42 0.05 0.07

(0.04) (0.005) (0.04) (0.004) (0.05) (0.005) (0.005)
Feb. 2.09 0.05 1.92 0.05 1.74 0.03 0.04

(0.04) (0.005) (0.05) (0.004) (0.05) (0.005) (0.004)

v July 1.55 0.11 1.53 0.09 1.29 0.08 0.06
(0.04) (0.006) (0.04) (0.006) (0.05) (0.007) (0.006)

Apr. 1.84 0.09 1.68 0.09 1.43 0.06 0.07
(0.04) (0.005) (0.04) (0.005) (0.05) (0.005) (0.005)

Feb. 2.15 0.05 1.71 0.07 1.50 0.03 0.06
(0.04) (0.004) (0.05) (0.004) (0.05) (0.005) (0.004)

500 u July 1.40 0.11 1.58 0.05 1.17- 0.10 0.03
(0.04) (0.006) (0.04) (0.003) (0.05) (0.006) (0.004)

Apr. 2.12 0.06 2.22 0.03 1.81 0.05 0.02
(0.04) (0.003) (0.04) (0.002) (0.05) (0.003) (0.002)

Feb. 2.22 0.05 2.40 0.02 2.02 0.05 0.01
(0.04) (0.003) (0.05) (0.002) (0.05) (0.003) (0.002)

v July 1.49 0.10 1.66 0.04 1.27 0.09 0.03
(0.04) (0.006) (0.05) (0.004) (0.05) (0.007) (0.004)

Apr. 2.03 0.06 1.99 0.04 1.68 0.05 0.02
(0.04) (0.003) (0.04) (0.002) (0.05) (0.004) (0.003)

Feb. 2.28 0.04 2.32 0.02 2.02 0.04 0.01
(0.04) (0.003) (0.05) (0.002) (0.05) (0.003) (0.002)

250 u July 2.42 0.06 2.52 0.03 2.13 0.05 0.02
(0.04) (0.003) (0.04) (0.002) (0.05) (0.004) (0.002)

Apr. 2.76 0.04 2.67 0.03 2.30 0.04 0.02
(0.04) (0.002) (0.04) (0.001) (0.05) (0.002) (0.002)

Feb. 3.02 0.04 2.56 0.03 2.28 0.03 0.03
(0.04) (0.002) (0.04) (0.001) (0.06) (0.002) (0.001)

v July 2.44 0.06 2.43 0.03 2.12 0.05 0.02
(0.04) (0.003) (0.04) (0.002) (0.05) (0.008) (0.002)

Apr. 2.75 0.04 2.64 0.03 2.28 0.03 0.02
(0.04) (0.002) (0.04) (0.001) (0.05) (0.002) (0.002)

Feb. 3.00 0.003 2.43 0.03 2.23 0.02 0.03
(0.04) (0.002) (0.05) (0.001) (0.06) (0.002) (0.001)

r(t) = [((u(t) - u(t-1))2 + (v(t) - v(t-1))2]1/2

s(t) = [u(t)2 + V(t)2]1/2
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TABLE 8. NORMAL MODELS
VALUES OF LOG-LIKELIHOOD

OBSERVED WIND COVARIATES
FEBRUARY AND JULY

One-Variate Two-
Pressure Wind Models variate

Level Comp. Data Set Model Constant f(t) s(t) Models

850 u July July -11269.3 -10787.3 -10849.5 -10695.2

Feb. Feb. -13211.6 -13071.2 -13023.0 -12964.0

Feb. July -13405.8 -13325.2 -13138.1 -13116.5

July Feb. -11417.3 -11017.6 -10963.0 -10826.0

v July July -11373.1 -10992.0 -11042.4 -10902.7

Feb. Feb. -13333.7 -13204.4 -12992.0 -12957.9

Feb. July -13531.8 -13446.7 -13018.8 -13078.6

July Feb. -11523.8 -11200.2 -11059.6 -10972.4

500 u July July -12205.2 -11734.6 -11953.8 -11670.9

Feb. Feb. -16273.0 -15924.6 -16151.7 -15892.9

Feb. July -17497.3 -16399.1 -16512.5 -16216.4

July Feb. -12913.9 -12174.5 -12419.9 -12014.1

v July July -12221.4 -11905.2 -12056.9 -11855.2

Feb. Feb. -15966.1 -15750.5 -15859.9 -15707.1

Feb. July -16900.4 -16168.5 -16066.0 -15997.7

July Feb. -12790.9 -12281.1 -12361.7 -12103.1

250 u July July -15876.6 -15440.6 -15592.7 -15335.2

Feb. Feb. -18771.3 -17773.0 -17619.9 -17413.1

Feb. July -20206.9 -18045.1 -17657.2 -17530.2

July Feb. -16742.6 -15713.3 -15609.6 -5_38h.4

v July July -15792.6 -15389.4 -15481.5 -15273.3

Feb. Feb. -18095.0 -17366.6 -17227.4 -17062.1

Feb. July -18953.0 -17603.0 -17227.8 -17186.8

1_July I Feb. -16366.7 -15608.7 -15481.6 -1523.9
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models (2) and (3) fit with data from the other month are larger in the

majority of the cases than the corresponding values of 1, fit with the data of

the same month. This suggests that models (2) and (3) fit using data from the

other month have some predictive value over a model of constant variance

fit using the data that is to be modeled.

Table 9 shows values of 2 for April data (respectively July data) using

parameters fit using April data (respectively July data). Values of 2 are also

presented for April data (respectively July data) using parameters fit using

July data (respectively February data). The under'-h d value in each row is

the maximum value in that row. The bold italicized value in each row is the

maximum value of 1 for the two one-variate models.

The values of I for April data (respectively July data) using parameters fit

using July data (respectively April data) are maximized by the two-variate

model in all cases; between the two one-variate models 1 is maximized in all

but five cases for the model involving r(t).

Comparing the value of t, 1c for the model of constant variance (5) for

April (respectively July) data using parameters estimated from April

(respectively July) data with that for the prediction value of 2 for the models

(2)-(3) for April (respectively July) data using parameters estimated from July

(respectively April) data indicate the following. The values of 1 for models

(2) and (3) fit with data from the other month are larger in the majority of the

cases than the corresponding values of 2c fit with the data of the same

month. This suggests that models (2) and (3) fit using data from the other

month have some predictive value over a model of constant variance fit

using the data that is to be modeled.
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TABLE 9. OBSERVED WIND COVARIATES
VALUE OF LOG-LIKELIHOOD

APRIL AND JULY

One-Variate Two-
Pressure Wind Models variate

Level Comp. Data Set Model Constant r(t) s(t) Models

850 u July July -11269.3 -10787.3 -10849.5 -10695.2

April April -13814.3 -13460.9 -13313.6 -13205.7

April July -14081.0 -13592.6 -13369.6 -13265.6

July April -11460.5 -10911.4 -10901.0 -10743.5

v July July -11373.1 -10992.0 -11042.4 -10902.7

April April -13837.2 -13421.2 -13389.5 -13229.7

April July -14067.2 -13490.0 -13423.9 -13251.4

July April -11540.6 -11058.4 -11073.6 -10920.7

500 u July July -12205.2 -11734.6 -11953.8 -11670.9

April April -16262.1 -15875.3 -16055.1 -15775.5

April July -17101.2 -16259.4 -16391.3 -16020.9

July April -12714.1 -12074.3 -12272.1 -11893.0

v July July -12221.4 -11905.2 -12056.9 -11855.2

April April -16476.6 -15698.2 -15843.3 -15584.2

April July -17472.3 -15913.3 -16008.0 -15703.2

July April -12807.2 -12095.5 -12198.1 -11946.8

250 u July July -15876.6 -15440.6 -15592.7 -15335.2

April April -20104.9 -17863.0 -18119.6 -17705.0

April July -21601.8 -179543 -18144.5 -17750.3

July April -16723.4 -15514.5 -15619.0 -1357.

v July July -15792.6 -15389.4 -15481.5 -15273.3

April April -18674.8 -17610.7 -17853.7 -17473.4

April July -19096.9 -17691.2 -17884.1 -17525.5

I I July April -16089.6 -15448.2 -15507.4 1-1529.4
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Table 10 shows the fraction of increase in 1 of using a model with

parameters estimated using another month to predict variance in the current

month compared to using the best constant variance model fit with the

current month. The results suggest that the models for other months do

have some predictive ability. Models fit using April data appear to have

more predictive ability for July than those fit using February data. The

predictive ability appears greater at the 250 mb level.

4.2 First-guess Wind Covariate Models

In this section we report results for normal models (1)-(3) using first-

guess wind components as covariates.

Table 11 shows the values of the parameter estimates and standard errors

for February data, April data and July data. The minor discrepancies with

values reported in Jacobs and Gaver (1991) are due to the deletion of

suspicious 0 wind values from the data sets. Table 12 shows the values of i

for February data (respectively April data) using parameters estimated from

February data (respectively July data). Values of i are also presented for

February data (respectively July data) using parameters estimated from July

data (respectively February data). The underlined value in each row is the

maximum value in that row. The bold italicized value in each row is the

maximum value of 1 for the two one-variate models.

The values of 1 for the observed wind covariates are larger than those for

the first-guess wind covariates in all cases. This suggests that the observed

wind covariates provide better models of the data both in terms of goodness-

of-fit and prediction.
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TABLE 10. FRACTION OF INCREASE

IN LOG-LIKEHHOOD

Pressure Wind One-variate Models Two-variate

Level Comp. Data Set Model f(t) s(t) Models

850 u July Feb. 0.02 0.03 0.04

July Apr. 0.03 0.03 0.05

Feb. July 0.006 0.007

Apr. July 0.02 0.03 0.04

v July Feb. 0.02 0.03 0.04

July Apr. 0.03 0.03 0.04

Feb. July * 0.006 0.007

Apr. July 0.03 0.03 0.04

500 u July Feb. 0.003 0.02

July Apr. 0.01 * 0.03

Feb. July * * *

Apr. July 0.00 * 0.01

V July Feb. * * 0.01

July Apr. 0.01 0.002 0.02

Feb. July * * *

Apr. July 0.03 0.03 0.05

250 U July Feb. 0.01 0.02 0.03

July Apr. 0.02 0.02 0.03

Feb. July 0.04 0.06 0.07

Apr. July 0.11 0.10 0.12

V July Feb. 0.01 0.02 0.03

July Apr. 0.02 0.02 0.03

Feb. July 0.03 0.05 0.05

Apr. July 0.05 0.04 0.06
• t c (data described by model with constant variance estimated using same

data)
> 1 (data described by model fit using other month)
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TABLE 11. FIRST GUESS WIND COVARIATES
PARAMETER ESTIMATES

(STANDARD ERRORS)

One-variate Models Two-variate Models
Pressure Wind Data r(t) s(t) log MSE = a+Ar(t)+p 2s(t)
Level Comp. Set a a a 8 A

850 u July 2.00 0.05 2.07 0.02 1..% 0.045 0.009
(0.04) (0.009) (0.04) (0.006) (0.05) (0.009) (0.007)

Apr 2.37 0.03 2.12 0.05 2.11 0.003 0.045
(0.04) (0.006) (0.04) (0.004) (0.05) (0.007) (0.004)

Feb 2.47 0.01 2.25 0.03 2.27 -0.01 -0.03
(0.04) (0.005) (0.04) (0.004) (0.05) (0.005) (0.004)

850 v July 1.98 0.06 1.94 0.04 1.86 0.04 0.03
(0.04) (0.008) (0.04) (0.006) (0.05) (0.009) (0.007)

Apr 2.46 0.02 2.21 0.04 2.22 -0.002 0.04
(0.04) (0.006) (0.04) (0.004) (0.05) (0.007) (0.004)

Feb 2.45 0.01 2.35 0.02 2.34 0.003 0.02
(0.04) (0.005) (0.04) (0.003) (0.04)- (0.005) (0.004)

500 u July 1.93 0.05 1.82 0.03 1.72 0.03 0.03
(0.04) (0.007) (0.04) (0.003) (0.05) (0.008) (0.004)

Apr 2.51 0.03 2.25 0.03 2.14 0.02 0.03
(0.04) (0.005) (0.04) (0.002) (0.05) (0.005) (0.002)

Feb 2.61 0.03 2.54 0.02 2.38 0.02 0.01
(0.04) (0.004) (0.05) (0.002) (0.05) (0.004) (0.002)

500 v July 1.97 0.04 1.92 0.02 1.83 0.03 0.02
(0.04) (0.007) (0.04) (0.004) (0.05) (0.007) (0.004)

Apr 2.33 0.06 1.96 0.05 1.76 0.03 0.04
(0.04) (0.005) (0.04) (0.002) (0.05) (0.005) (0.002)

Feb 2.71 0.01 2.47 0.02 2.44 0.004 0.01
(0.04) (0.004) (0.05) (0.002) (0.05) (0.004) (0.002)

250 u July 2.90 0.03 2.79 0.02 2.70 0.02 0.02
(0.04) (0.004) (0.04) (0.002) (0.05) (0.005) (0.002)

Apr 4.01 -0.01 3.48 0.01 3.63 -0.02 0.02
(0.04) (0.004) (0.05) (0.002) (0.06) (0.004) (0.002)

Feb 3.67 0.02 2.94 0.03 2.75 0.02 0.03
(0.04) (0.003) (0.05) (0.002) (0.06) (0.03) (0.001)

250 v July 2.79 0.04 2.71 0.02 2.55 0.03 0.02
(0.04) (0.004) (0.04) (0.002) (0.05) (0.004) (0.002)

Apr 3.27 0.03 2.80 0.03 2.68 0.01 0.02
(0.04) (0.003) (0.05) (0.002) (0.05) (0.003) (0.002)

Feb 3.48 0.02 3.08 0.02 2.84 0.02 0.02
(0.04) (0.003) (0.05) (0.002) (0.06) (0.003) (0.001)
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TABLE 12. FIRST-GUESS WIND COVARIATES
VALUE OF LOG-LIKELIHOOD

JULY AND FEBRUARY

One-variate Models Two-
Pressure Wind Data variate

Level Comp. Set Model Constant r#) ft) Models

850 u July July -11879.1 -11844.0 -11867.3 -11842.0

Feb. Feb. -14370.0 -14367.8 -14316.7 -14315.3

Feb. July -14597.0 -14553.6 -14429.2 -14492.6

July Feb. -12046.1 -12022.4 -11942. -11954.1

850 v July July -11925.2 -11873.3 -11875.4 -11853.2

Feb. Feb. -14399.2 -14392.7 -14373.5 -14373.1

Feb. July -14618.3 -14563.6 -14487.1 -14504.7

July Feb. -12087.0 -12042.5 -119973 -11991.0

500 u July July -13308.2 -13255.8 -13223.8 -13203.8

Feb. Feb. -17944.6 -17889.7 -17890.6 -17853.6

Feb. July -19419.3 -18592.2 -18411.8 -18170.3

July Feb. -14143.8 -13857.6 -13788.7 -13633.3

500 v July July -13314.7 -13274.6 -13274.8 -13253.6

Feb. Feb. -17592.4 -17587.0 -17541.6 -17540.5

Feb. July -18727.5 -18262.2 -17994.9 -17890.6

July Feb. -13992.0 -13909.7 -13684.2 -13659.9

250 u July July -17182.5 -17117.0 -17080.6 -17059.0

Feb. Feb. -20872.6 -20836.3 -20538.2 -20505.4

Feb. July -22345.1 -21676.2 -21016.2 -20887.3

July Feb. -18057.7 -17829.7 -17266.9 -17178.3

250 v July July -17005.0 -16900.6 -16889.1 -16833.3

Feb. Feb. -20075.0 -20031.7 -19925.2 -19876.6

Feb. July -20975.0 -20485.3 -20131.7 -19988.6

I July Feb. -17593.9 -17376.1 -17090.4 -16244.4
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The values of 1 for February data (respectively July data) using parameters

fit using July data (respectively February data) are maximized most of the

time by the two-variate model.

A comparison of the value of 1, 1c, for the constant variance model of

February (respectively July) data fit using the same month February

(respectively July) data and the prediction values of 1 for models

(1)-(3) of February (respectively July) data using parameters estimated from

the other month of July (respectively February) indicate the following. A

majority of the time 1c is larger than the corresponding values of 1 for

models (1)-(3) fit with the other month's data. This suggests that the first-

guess covariate models fit using the other month's data may not describe the

data as well as a constant variance model fit using the data being modeled.

This may be an indication that models fit using first-guess February wind

(respectively July wind) data are not good predictors of July (respectively

February) wind component error.

Table 13 presents values of 1 similar to those of Table 12 except that they

are for the months of April and July. Comparison of the values of 1c for data

of one month fit with a constant variance model using the same data and the

corresponding value of i for the data using models with parameters

estimated using the other month suggests that models using first-guess

covariates do not have much predictive ability across these months. Table 14

presents the fraction of increase (I-Id)/ IcI for the models with first guess

covariates. Once again the results suggest that models using first guess wind

components do not have much predictive ability across months.
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TABLE 13. VALUE OF LOG-LIKEUHOOD
FIRST-GUESS WIND COVARIATES

APRIL AND JULY

Two-
Pressure Wind Data One-variate Models variate

Level Comp. Set Model Constant r1(t) st) Models

850 u July July -11879.1 -11844.0 -11867.3 -11842.0

Apr. Apr. -14757.3 -14736.8 -14626.1 -14625.9

Apr. July -14999.4 -14901.0 18181 -14834.6

July Apr. -12052.2 -11988.1 -11950.1 -11945.1
850 v July July -11925.2 -11873.3 -11875.4 -11853.2

Apr. Apr. -14949.1 -14937.9 -14848.1 -14848.0

Apr. July -15247.5 -15169.4 -15002.4 -15022.3
July Apr. -12133.8 -12077.1 -1992.8 -11996.6

500 u July July -13308.2 -13255.8 -13223.8 -13203.8

Apr. Apr. -17905.8 -17860.4 -17761.5 -17742.2

Apr. July -18865.3 -18381.2 -18190.3 -18031.5

July Apr. -13883.0 -13686.2 -13530.8 -13499.0
500 v July July -13314.7 -13274.6 -13274.8 -13253.6

Apr. Apr. -18112.7 -17948.5 -17703.9 -17645.9

Apr. July -19233.9 -18557.9 -18350.3 -18120.7

July Apr. -13967.8 -13597.8 -13465.5 -13371.9

250 u July July -17182.5 -17117.0 -17080.6 -17059.0

Apr. Apr. -22104.4 -22091.9 -22033.1 -22001.7

Apr. July -23605.6 -23431.0 -22954.8 -22967.8

July Apr. -18030.1 -18149.2 -17715. -17847.7

250 v July July -17005.0 -16900.6 -16889.1 -16833.3
Apr. Apr. -20637.7 -20576.6 -20355.8 -20336.7

Apr. July -21139.5 -20837.5 -20503.3 -20453.8

I July Apr. -17346.8 -17149.6 -16965.5 1-1695
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TABLE 14. FRACTION OF INCREASE
IN LOG-LIKELIHOOD

(2-2dlI k'l
FIRST-GUESS WIND COVARIATES

Pressure Wind Data One-variate Models Two-variate
Level Comp. Set Model r#) sE() Models

850 u July Feb. * * *

July Apr. * * *

Feb. July *

Apr. July * * *

850 v July Feb. * * *

July Apr. * * *

Feb. July * *
Apr. July * * *

500 u July Feb. * * *

July Apr. * * *

Feb. July * * *

Apr. July * * *

500 v July Feb. * * *

July Apr. * *

Feb. July * *

Apr. July * * *

250 u July Feb. * * 0.00

July Apr. * * *

Feb. July * * *

Apr. July * *

250 v July Feb. * 0.004

July Apr. * 0.002 0.006

Feb. July * * 0.004

Apr. July * 0.007 0.009

• c (data described by model of constant variance fit using same data)

> 2 (data described by model fit using the other month)
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4.3 Conclusions

Models (2) and (3) using observed wind components as covariates and fit

using February or April (respectively July) data appear to have some

predictive value for July (respectively February or April) data. Their

predictive ability appears to be better for lower pressure levels. Models fit

using April data appear to have more predictive ability than those fit using

February data.

Models using first-guess wind covariates do not appear to have predictive

ability across these months. It might be that models (1)-(3) fit with first-guess

data from other Julys are better predictors of July wind component error.

Alternatively, if first-guess winds are to be used as predictors, it might be

worthwhile to develop a procedure to update the fitted model parameters

using new data as it comes in.
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APPENDIX A

A BOOTSTRAP CROSS-VALIDATION STUDY FOR JULY DATA

In this Appendix histograms are presented from a bootstrap cross-

validation study of models for July using both observed wind covariates and

first guess wind covariates. Figures 1A-6A present results for the observed

wind covariates. Figures 7A-12A present results for the first guess wind

covariates.
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APPENDIX B

A GRAPHICAL ASSESSMENT OF GOODNESS OF FIT AND CROSS-

VALIDATION OF MODELS OF JULY WIND COMPONENT MEAN SQUARE

ERROR USING FIRST-GUESS WIND COVARIATES

In this appendix we present figures assessing goodness of fit and cross-

validation of the normal models (1)-(3) with first-guess wind covariates fit to

July data. As in subsection (3.2) the data is randomly divided into two sets

called DA and DB without regard to the values of the data; these sets are the

same as those in that section.

The maximum likelihood parameter estimates for each model (1)-(3) are

obtained for each set DA and DB and appear in Table 4. The estimated
2 2 2, 2

variances c 1(1,t), oal(2,Oo 2(t) are computed for the parameters estimated

from DA and DB using (1)-(3) for each data point in DA and DB.

To assess models (1) and (3) the data (y(t), r(t), s(t)) are binned into 10 bins

based on odering the values of r(t) from smallest to largest. The data in the

first bin correspond to the smaller values of r(t); the data in the 10 'h bin

correspond to the larger values of r(t). Each bin contains about -L0 of the data

with the 10 't bin containing a few more data. The averages of the estimated

variances for models (1) and (3) are computed for each bin. The average y(t)2

is also computed for each bin.

To assess models (2) and (3) the same procedure is used but the binning is

based on values of s(t).

Figures 1B-24B present graphs of the log[average y(t)2] in each bin versus

log[average estimated variance] in each bin for models (1) and (3) and models
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(2) and (3). Figures 1B, 5B, 9B, 13B, 17B, 21B (respectively 2B, 6B, 10B, 14B, 18B

22B) show the logarithm of the average of the y(t) 2 values of DA (respectively

DB) versus the logarithm of the average of the estimated variances for each

bin using the estimated parameters from DA (respectively DB). If a model

were perfect, a point should be close to the 450 line shown. These figures

assess goodness of fit.

Figures 3B, 7B, 11B, 15B, 19B, 23B (respectively 4B, 8B, 12B, 16B, 20B, 24B)

present graphs of log average y(t)2 of DA (respectively DB) versus log average

estimated variances using parameters estimated using data DB (respectively

DA). Once again if the model were perfect, the points would be close to the

450 line.

As suggested by the values of the log-likelihood i in Tables 2 and 4, the

figures for models using first-guess covariates indicate weaker goodness of fit

and weaker cross-validation than Figures 1-24 for models with observed wind

speed covariates. Both goodness-of-fit and cross-validation appear to

improve somewhat for lower pressure levels; Figures 17B-24B. This suggests

that models using first-guess covariates have somewhat better predictive and

descriptive value at 250mb levels. However, they appear to be not as good as

models using observed wind speed as covariates.
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